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Abstract
Using computer enumerations and a rational approximant method of series
analysis, we conjecture an expression for the first perimeter moment of directed
animals on the square lattice which are confined in a strip of a given width with
open boundary conditions. When the width tends to infinity, the conjecture
leads to an algebraic series for the first perimeter moment of directed animals
on one-half of the square lattice, similar to Conway’s earlier conjecture for the
whole square lattice.
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Mathematics Subject Classification: 05A15
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In this paper, animals of source S are certain finite connected sets of sites of a directed square
lattice that contain at least a subset S. The neighborhood of an animal is made up of sites that
are not in the animal but are the target of a directed edge of the lattice coming from a site of the
animal. The enumeration of these animals according to the number of sites, and the number of
sites in the neighborhood, respectively called area and perimeter and encoded by the variables
t and u, leads to the generating function A(S; t, u). This generating function is central in the
context of site percolation on this directed lattice. Indeed, if sites of S are open and the other
sites are open independently with probability p, the probability of non-percolation from any
site of S is A(S;p, 1 − p)/p|S|. Determining the bivariate generating function is an open
problem at least as hard as computing this probability. The series

(
∂kA
∂uk (S; t, 1)

)
k�0 appearing

in the Taylor expansion at u = 1 of A(S; t, u) according to the variable u may be more
tractable. Knowledge of all these series leads to A(S; t, u). Until the following section, we
assume that S = So consists of only a single given site. In this case, the first series in the
Taylor expansion, the generating function A(So; t, 1) is now a well-known algebraic series
[1, 9, 11], that is defined by equation (1) in this paper. Among the different proofs of this result
or variants, some proofs begin with confining the sites of the animals to a strip of bounded
width with open or cyclic boundary conditions and then the width tends to infinity to obtain
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the result on the whole square lattice [4, 12]. In the case of open boundary conditions, the
generating function An(So; t, 1) of animals confined in a strip of width n is a rational function
that can be written as Tn−1(t/(1 − t))/Tn(t/(1 − t)) − 1 where (Tn(x))n�0 are polynomials
(defined after equation (4) in section 1 of this paper) related to Chebyshev’s polynomials.
Conway [7] formulated an algebraic equation, given as (2) of section 1 in this paper, satisfied
by the second series of the Taylor expansion, ∂A

∂u
(So; t, 1), on the whole square lattice. This

quantity is also called the first perimeter moment. This algebraic equation comes from an
algebraic approximant of the first terms of the series, so this is not a proved equation. However,
quoting Conway, ‘since the approximant [is] generated from far fewer terms, it is exceedingly
unlikely that [it is] incorrect’.

In section 1 we formulate a conjecture for the first perimeter moment, ∂An

∂u
(So; t, 1) for

animals restricted to a strip of arbitrary width n with open boundary conditions. For a strip
of width n not greater than 9, the transfer matrix approach allows us to compute exactly
the first perimeter moment of animals confined in these strips in less than a minute on a
computer algebra system. We can repeat this computation for a bit wider strips, but the time of
computation becomes rapidly too long, and nine terms are sufficient to guess the denominators
of these rational series and check this guess enough on thin strips to reasonably use it as a
conjecture for all widths. For example in the case of width 5, using the change of variable
x = −t/(1 + t) we obtain

∂A5

∂u
(So; t, 1) = − (2 + 15x + 40x2 + 45x3 + 23x4 + 8x5 + 2x6)x

(1 + 5x + 6x2 + x3)2
= P5(x)

T5(−t/(1 + t))2
.

We observe that denominators in the first perimeter moments seem to be exactly the square of
polynomials that are denominators of A5(So; t; 1) the generating function according to area
for the same width. This remark suggests considering whether the first perimeter moment is
related to the derivative of An(So; t, 1) with respect to t, that is the generating function for
animals with source So and with a site marked off. We did not find such relation. Stating a
conjecture for numerators (Pn(x))n�0 requires to compute the first moment for wider strips. In
section 2 we describe the alternation of computations and conjectures that we use to perform
efficiently this computation. Our final conjecture, stated at the end of section 1, has for n � 10
the same status as Conway’s conjecture: it is not proved but the approximants are generated
by far fewer terms.

When the width tends to infinity, this conjecture leads to an algebraic equation similar to
Conway’s but for A∞(So; t, 1), the generating function of animals restricted to one-half of the
square lattice which are called half-animals in this introduction. These animals appear in the
combinatorial decomposition of animals of source So proposed in [1, 2] and re-presented in
[5] where animals are described as a sequence of half-animals. This decomposition preserves
the area and leads to

A(So; t, 1) = A∞(So; t, 1)(1 + A(So; t, 1))

that explains in this case why the radical
√

(1 + t)(1 − 3t) appears simultaneously in both
series A(So; t, 1) and A∞(So; t, 1). This radical comes from a quadratic equation related to a
recursive decomposition of half-animals into up to two smaller half-animals. From this point
of view, half-animals are more elementary than animals that is why we choose to fix the source
on one boundary of the strip to obtain half-animals for infinite width and not in the middle of
the strip, this choice giving animals for infinite width. All these decompositions are based on
factorizations of heaps [14] in bijection with animals that imply non-uniform translations
of the sites that do not preserve the perimeter. Thus we did not find a straightforward
generalization of the decomposition of animals as a sequence of half-animals such that the
perimeter of an animal can be deduced from its sequence of half-animals and in particular their
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Figure 1. The labeling of the directed square lattice and an animal A = {�,�} =
{(6, 0), (5, 1), (6, 2), (8, 2), (5, 3), (7, 5)} of source S = {�} = {(6, 0), (8, 2)} and neighborhood
N(A) = {�} = {(7, 1), (4, 2), (9, 3), (4, 4), (6, 4), (8, 4)}. This animal is confined in the vertical
strip defined by the interval [5, 9].

perimeters. However, Conway’s conjecture (3) for animals and our conjecture (7) for half-
animals also contain the same radical

√
(1 + t)(1 − 3t) that suggests the possible existence

of such decomposition in the case of the first perimeter moment. Another interest of our
conjecture is to approach a generating function similar to Conway’s by a sequence of rational
series whose numerators, respectively denominators, satisfy recurrences involving a finite
number of numerators, respectively denominators. This sequence may be used in a proof by
induction and play the same role in computation of the first perimeter as the ratio of consecutive
Chebyshev’s polynomials in the case of the enumeration of animals according to area. We
hope that the publication of our conjecture will stimulate the research on this question like
previous conjectures already have on directed animals [7, 8, 10, 13].

1. Definitions, some known results and the main conjecture

The sites of the two-dimensional directed square lattice are labeled by ordered pairs
(i, j) ∈ Z × Z such that i + j is even. There is a directed edge (i, j) −→ (k, l) from a
site (i, j) to a site (k, l) if (k, l) ∈ {(i − 1, j + 1), (i + 1, j + 1)}. A path in this lattice is a
sequence of sites s0, s1, . . . , sn such that for k = 0, . . . , n − 1 there exists a directed edge
sk −→ sk+1. All these and following definitions are illustrated in figure 1.

Let S be a finite set of sites of the square lattice. An animal A with source S is a finite
set A such that for any site a ∈ A there exists a path from a site of S to a made up of sites
in A. A site (i, j) /∈ A is a neighbor in the neighborhood N(A) of the animal A if there is
an edge from a site in A to (i, j), that is, either (i − 1, j − 1) ∈ A or (i + 1, j − 1) ∈ A.
The set of animals with a given source S is denoted by A(S). The area ar(A) of an animal
A (with source S) is the cardinality of A and the perimeter per(A) is the cardinality of its
neighborhood N(A). The distribution of these two parameters on A(S) defines the generating
function A(S; t, u) = ∑

A∈A(S) tar(A)uper(A). We already know from the literature, see for
example [1, 2, 9, 11] that

A(So; t, 1) = 1

2

(√
1 + t

1 − 3t
− 1

)
(1)

where So = {(1, 1)}. Conway’s conjecture (table 1 in [7]) is that X(t) = ∂A
∂u

(So; t, 1) satisfies
the algebraic equation

tX(t)2 +
t2 + t + 1

1 + t
X(t) +

t (2 − 6t − 5t2 + 12t3 + 13t4 + 12t5 + 9t6)

(1 + t)3(3t − 1)3
= 0. (2)

3
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It means

∂A

∂u
(So; t, 1) = 1 − 3t + 2t2 + t3 − 3t4

2t (1 + t)2(1 − 3t)2

√
(1 + t)(1 − 3t) − 1 + t + t2

2t (1 + t)
. (3)

An animal A is confined in a (vertical) bounded strip defined by an interval [a, b] ⊆ Z

if any site (i, j) of A satisfies i ∈ [a, b]. The set of animals of source S included in the
bounded strip is denoted A[a,b](S) and the corresponding generating function A[a,b](S; t, u).
We remark that a neighbor site of an animal confined in a bounded strip may not be in this
strip. With this notation we have A(S; t, u) = A]−∞,+∞[(S; t, u). To relieve the notations we
use for any k � 0 and n � 1

A(k)
n (S; t, u) = ∂kA[1,n]

∂uk
(S; t, u).

We already know from the literature, see [5] citing [14], that for any n � 1

A(0)
n (So; t, 1) = Tn−1(−t/(1 + t))

Tn(−t/(1 + t))
− 1, (4)

where the polynomials (Tn(x))n�−1, related to the Chebyshev polynomials, are defined by
T−1(x) = 1 = T0(x) and for n � 1, Tn(x) = Tn−1(x) + xTn−2(x). Since the substitution
t = −x/(1 + x) appears frequently in this paper, we use the following unusual notation for the
variables t and x: a function F of t where t is set to −x/(1+x) is not denoted by F(−x/(1+x))

but more concisely by F(x).
We remark that A

(1)
+∞(So; t, 1) is the first perimeter moment of animals of source So lying

in one-half of the square lattice. The following conjecture relies on computations detailed in
the following section.

Conjecture 1. For any n � 1,

A(1)
n (So; t, 1) = Pn(x)

Tn(x)2
(5)

where x = −t/(1 + t),

P1(x) = −2x(1 + x),

P2(x) = −x(2 + 3x),

P3(x) = −(1 + x)x(2 + 5x + 3x2 + x3),

P4(x) = −(1 + x)x(2 + 9x + 11x2 + x3)

and for n � 5,

Pn(x) = Pn−1(x) + 2x(1 + x)Pn−2(x) + x2Pn−3(x) − x4Pn−4(x). (6)

When n tends to infinity the series A(1)
n (So; t, 1) converges to the power series

A(1)
+∞(So; t, 1) = 1 − 2t − t2 − t3

2t2(1 + t)
− 1 − 3t − t2 − 2t3 − 3t4

2t2(1 + t)(1 − 3t)

(
1 − 3t

1 + t

) 1
2

, (7)

which satisfies the following algebraic equation where it is denoted by X(t):

t (−2 + 3t + 9t2 + 7t3 + 5t4 + 3t5)

(3t − 1)(1 + t)2
+ (t3 + t2 + 2t − 1)X(t) + t2(1 + t)X(t)2 = 0. (8)

For any power series A(t), we denote by [tk]A(t) the coefficient of t k in A(t) and by
[t�k]A(t) the polynomial

∑k
i=0([t

i]A(t))t i . As a consequence of conjecture 1, we can express

4
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given any k � 1 the first perimeter moment for animals on the half-plane whose area is exactly
k:

[tk]A(1)
+∞(So; t, 1) = (−1)k

k∑
j=1

(
k − 1

k − j

)(
[xj ]A(1)

+∞(So; x, 1)
)
, (9)

where [x1]A(1)
+∞(So; x, 1) = −2 and for j � 2

[xj ]A(1)
+∞(So; x, 1) = 1

4
(−1)j

(
2j

j

)
9j 4 + 37j 3 − 108j 2 + 92j − 72

(2j − 3)(2j − 1)(j + 1)(j + 2)
. (10)

The coefficient [xj ]A(1)
+∞(So; x, 1) is derived from equation (27) given in section 2.4 of this

paper and the well-known expansion

1√
1 − 4x

=
∑
j�0

(
2j

j

)
xj .

The fact that denominators in equation (27) are x2, except for the radical
√

1 + 4x, simplifies
the computation. Then the computation of the coefficient [tk]A(1)

+∞(So; t, 1) is a straightforward
translation of the substitution x = −t/(1 + t).

2. Computations which support the conjecture

As in [4, 12, 13], we use the well-known transfer-matrix approach to write systems of equations
satisfied by the generating functions under study. Roughly speaking, we use the recursive
deletion of the first row of an animal.

2.1. Computation to guess denominators and degree of numerators

A set of sites X is aligned (on the row k) if for all (i, j) ∈ X, j = k. The computation of the
first terms of the generating functions are based on the following classical partition of animals
with an aligned source S on the row k:

A[1,n](S) =
⋃

T ⊆N[1,n](S)

⎛
⎝ ⋃

B∈A[1,n](T )

{S ∪ B}
⎞
⎠ , (11)

where N[1,n](S) = {(i, j) ∈ N(S)|1 � i � n} and so T is aligned on the row k +1. Knowledge
of S and T is sufficient to determine the contribution of S to the area and perimeter. Moreover,
for any aligned source S and interval [1, n] we have

A(0)
n (S; t, u) = A(0)

n (π(S); t, u), (12)

where π is the projection onto the two ‘main’ rows defined on the sites of the square lattice
by π((2i, j)) = (2i, 0) and π((2i + 1, j)) = (2i + 1, 1). In terms of generating functions we
obtain

A(0)
n (π(S); t, u) =

∑
T ⊆N[1,n](π(S))

t |π(S)|u|N(π(S))|−|π(T )|A(0)
n (π(T ); t, u). (13)

The set of projections π(S) of aligned sources in the strip [1, n] is finite and denoted �n.
In this case, (13) is a finite set of linear equations whose unknowns are the |�n| generating
functions

(
A(0)

n (S; t, u)
)
S∈�n

with the additional equation

A(0)
n (∅; t, u) = 1.

5
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A computer algebra system solves this system for a width n from 2 to 9 in less than a
minute. Thus we obtain

(
A(0)

n (So; t, u)
)

2�n�9 which are rational functions in t with coefficients

polynomials in u and a straightforward partial derivation leads to
(
A(1)

n (So; t, 1)
)

2�n�9 which
are rational functions in t. Equation (4) suggests the reversible change of variable

x ≡ − t

1 + t
, and conversely t ≡ − x

1 + x
. (14)

This allows us to identify the denominators of
(
A(1)

n (So; x, 1)
)

2�n�9 and to note a strong
regularity of the degree of numerators.

Conjecture 2. For any n � 3, there is a polynomial Pn(x) of degree 1 + 2	n/2
 such that

A(1)
n (So; x, 1) = Pn(x)

Tn(x)2
. (15)

We remark that we also compute in this case the generating functions An(S; t, u) for any
aligned source S but we do not use these results.

2.2. Computation of numerators

Assuming conjecture 2, the polynomial Pn(x) can be computed from the first 1 + 2	n/2

non-zero terms of the expansion of A(1)

n (So; x, 1):

Pn(x) = [x�1+2	n/2
]
(
Tn(x)2

(
[x�1+2	n/2
]A(1)

n (So; x, 1)
))

. (16)

We deduce [x�k]A(1)
n (π(S); x, 1) from [t�k]A(1)

n (π(S); t, 1) since the substitution

t = −x/(1 + x) = −x

⎛
⎝∑

i�0

(−x)i

⎞
⎠ (17)

maps a monomial t k to a sum of monomials in x of degree at least k.
For any j ∈ N, the series A

(j)
n (S; t, 1) is also the generating function of pairs (A,B)

where A is an animal of source S and the set of sites B ⊆ N(A) is a selection of j distinct
neighbor sites on its neighborhood, according to the area of A. Using this remark, the system
of equations (13) can be translated into the following recurrence over the coefficients:

[t i]A(j)
n (π(S); t, 1) =

∑
T ⊆N[1,n](π(S))

j∑
k=0

(|N(π(S))| − |π(T )|
k

)
[t i−|π(S)|]A(j−k)

n (π(T ); t, 1),

where k denotes the number of selected neighbors on N(π(S)). Like Conway in [7], we use
dynamic programming to efficiently compute all [tk]A(1)

n (So; t, 1) for k from 1 to 1 + 2	n/2

using this recurrence. Only the coefficients of A(0)

n (π(S); t, 1) and A(1)
n (π(S); t, 1) are

involved in this computation.
Assuming conjecture 2, we compute the numerators for n from 2 to 38. We also compute

some additional terms of A(1)
n (So; x, 1) to test this conjecture.

2.3. Computations on the sequence of numerators and denominators

To study the sequences of numerators, respectively denominators, we use an additional formal
variable y to record the width of the strip and introduce the formal power series

N(x, y) ≡
∑
n�2

Pn(x)yn and D(x, y) ≡
∑
n�2

Tn(x)2yn.

6
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In a previous work [3], the author conjectured by a haphazard inspection of the Pn(x) a
relation of the following form:

α(x, y)N(x, y) + β(x, y)D(x, y) + γ (x, y) = 0,

where α(x, y), β(x, y) and γ (x, y) are polynomials in x and y. This relation allows us to
deduce (8) but we present here only the following ansatz which seems not to be comparable to
this relation. This ansatz was pointed to the author by Bousquet-Mélou: we check if N(x, y)

and D(x, y) are rational functions in y with coefficients Laurent series in x. We computed
enough terms of these series to use successfully the Padé approximation [6].

Conjecture 3. The series of numerators and denominators are rational functions in y with
coefficients Laurent series in x,

N(x, y) = − xy(2 + 2x + xy + x4y2)

(1 + xy)2(1 − (1 + 2x)y + x2y2)
(18)

D(x, y) = y((1 + x)2 + x(1 + x − x2)y − x3y2)

(1 + xy)(1 − (1 + 2x)y + x2y2)
. (19)

The sum of degrees with respect to y of numerators and denominators of N(x, y) is 9
and we are able to compute the series expansion until y38 so, assuming conjecture 2,
conjecture 3 is confirmed by the cancellation of roughly 30 terms. Recurrence (6) is a
straightforward translation of the rational series N(x, y).

2.4. Asymptotics of the ratios sequence

Proposition 1. Conjecture 3 implies Conjecture 1

Proof. We detail the study of the convergence of the ratios (Pn(t)/Tn(t)
2)n�2. We observe

that the denominators of the two rational functions of (18) and (19) have the same roots with
an additional multiplicity for one of them in N(x, y). We denote the inverses of these roots
by γ1(x) = x, γ2(x) = 2x2/(1 + 2x − √

1 + 4x) and γ3(x) = 2x2/(1 + 2x +
√

1 + 4x).
The partial fraction expansions of these rational functions lead to an expression of

[yn]N(x, y) = Pn(x) and [yn]D(x, y) = Tn(x)2. For n large enough, we have

Pn(x) =
3∑

i=1

fi(x)γi(x)n + nf4(x)γ1(x)n, (20)

Tn(x)2 =
3∑

i=1

gi(x)γi(x)n (21)

where

f2(x) = x(x2 − 2x − 2)

2(1 + 4x)
− x(2 + 8x + 5x2 + 2x3)

2(1 + 4x)2

√
1 + 4x, (22)

g2(x) = 1 + 4x + 2x2

2(1 + 4x)
+

1 + 2x

2(1 + 4x)

√
1 + 4x. (23)

We do not give explicitly the other Laurent series (fi(x))1�i�4 and (gi(x))1�i�3 as they are
not related to the dominant terms that define the asymptotic behavior.

7
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The valuation of a Laurent series h(x) = ∑∞
n=K hnx

n, where hK �= 0, is K and denoted
by ldeg(h). Since ldeg(γ1(x)) = 1, ldeg(γ2(x)) = 0 and ldeg(γ3(x)) = 2, we have

Pn(x) = f2(x)γ2(x)n + O(xn+kP ), (24)

where kP = min(nldeg(γ1) + ldeg(f1), nldeg(γ3) + ldeg(f3), nldeg(γ1) + ldeg(f4)) − n is an
integer independent of n for n big enough, and

Tn(x)2 = g2(x)γ2(x)n + O(xn+kT ), (25)

where kT = min(nldeg(γ1) + ldeg(g1), nldeg(γ3) + ldeg(g3)) − n. Since ldeg(γ2(x)) = 0,
this power series admits an inverse which is a power series, so we can multiply by
1/γ2(x)n = O(x0) both terms in the following ratio:

Pn(x)

Tn(x)2
= f2(x) + O(xn+kP )

g2(x) + O(xn+kT )
= f2(x)

g2(x)
+ O(xn+kP/T ) (26)

where kP/T = min(kP , kT ) + ldeg(g2) as soon as n > kT + ldeg(g2).
Thus when n tends to infinity we have

A(1)
+∞(So; x, 1) = f2(x)

g2(x)
= 1 + 5x + 6x2 + 3x3

2x2
+

1 + 7x + 14x2 + 13x3 + 2x4

2x2
√

1 + 4x
. (27)

Using an argument similar to that involving (17) we deduce the value of A
(1)
+∞(So; t, 1) in

conjecture 1. �
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Thesis Université Bordeaux I (French)

[4] Bousquet-Mélou M 1998 New enumerative results on two dimensional directed animals Discrete Math.
180 73–106

[5] Bousquet-Mélou M and Rechnitzer A 2002 Lattice animals and heaps of dimers Discrete Math. 258 235–74
[6] Cabay S and Choi D 1986 Algebraic computations of scaled Padé fractions SIAM J. Comput. 15 243–70
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